Commutative rings whose quotients are Goldie

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups whose proper quotients are virtually abelian

The just non-(virtually abelian) groups with non-trivial Fitting subgroup are classified. Particular attention is given to those which are virtually nilpotent and examples are given of the interesting phenomena that can occur.

متن کامل

On Semiprime Right Goldie Mccoy Rings

In this note we first show that for a right (resp. left) Ore ring R and an automorphism σ of R, if R is σ-skew McCoy then the classical right (resp. left) quotient ring Q(R) of R is σ̄-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (σ-skew McCoy) rings.

متن کامل

Commutative group rings with von Neumann regular total rings of quotients

Article history: Received 12 May 2011 Available online xxxx Communicated by Luchezar L. Avramov In memory of Miki Neumann

متن کامل

On Rings Whose Associated Lie Rings Are Nilpotent

We call (i?) 1 the Lie ring associated with R, and denote it by 9Î. The question of how far the properties of SR determine those of R is of considerable interest, and has been studied extensively for the case when R is an algebra, but little is known of the situation in general. In an earlier paper the author investigated the effect of the nilpotency of 9î upon the structure of R if R contains ...

متن کامل

Monomial Ideals with Linear Quotients Whose Taylor Resolutions Are Minimal

We study when Taylor resolutions of monomial ideals are minimal, particularly for ideals with linear quotients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1975

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500002470